
Change	api	in	android	studio

http://oalroax.com/c3?utm_term=change+api+in+android+studio


How	to	change	api	sdk	level	in	android	studio.	How	to	use	api	in	android	studio.	How	to	use	news	api	in	android	studio.	How	to	change	api	level	in	android	studio.	How	to	change	minimum	api	level	in	android	studio.	Api	in	android	studio	example.	What	is	api	in	android	studio.

I	have	several	Genymotion	emulators	for	different	API	levels.	The	problem	is	this:	I'm	running	the	app	in	an	emulator	with	the	"Same	device	for	future	run"	option	enabled.	I	open	another	emulator.	I	restarted	the	app.	After	that	the	app	only	works	on	the	first	emulator	and	I	can't	figure	out	how	to	bring	up	the	dialog	box	(select	target)	again	to	run	the



app	on	both	emulators.	1	As	per	this	answer,	just	don't	include	minsdkversion	in	the	manifest.xml	file	and	the	build	system	will	use	the	values	from	the	build.gradle	file	and	include	the	information	in	the	final	apk	file.	Since	the	build	system	needs	this	information	anyway,	this	makes	sense.	These	values	should	not	be	entered	twice.	After	modifying	the
build.gradle	file,	all	you	need	to	do	is	sync	the	project,	but	Android	Studio	0.5.2	will	show	a	yellow	status	bar	at	the	top	of	the	build.gradle	editor	window	to	help	you.	Also	note	that	there	are	at	least	two	build.gradle	files:	one	for	main	and	one	for	app/module.	What	needs	to	be	changed	is	in	the	app/module	that	already	has	the	minSdkVersion	property
in	the	newly	generated	project.	Improve	article	Save	article	as	article	In	general,	the	API	level	refers	to	the	Android	version.	This	determines	which	version	developers	target	their	app	and	the	minimum	Android	version	level	their	app	will	run	on.	To	set	the	minimum	and	maximum	values,	Android	Studio	offers	two	terminologies.	minSdkVersion:	This
means	the	minimum	version	of	the	Android	OS	that	the	application	supports	and	targetSdkVersion:	This	means	the	version	that	developers	are	actually	developing	their	application	for.	The	app	will	be	compatible	with	all	Android	versions	between	the	minimum	SDK	level	and	the	target	SDK	level.	Sometimes	you	need	to	change	Android	Studio's	API
layer	during	development.	So	we	have	two	methods	to	change	the	API	level.	In	this	article,	we	will	discuss	both	methods.	This	method	is	very	simple	and	very	directYou	have	to	be	very	careful	when	making	changes	here.	Step	1:	Open	the	project	in	android	mode,	then	go	to	Gradle	Scripts	>	build.gradle	(module:	app)	as	shown	in	the	image	below.
Step	2:	See	the	picture	below	and	here	you	need	to	change	minSdkVersion	and	targetSdkVersion	as	needed.	Once	you've	made	your	changes	as	required,	click	the	Sync	Now	button	and	you're	done.	Method	2	Step	1:	Open	Android	Studio	and	choose	File	>	Project	Structure	as	shown	in	the	image	below.	Step	2:	A	pop-up	window	will	appear	as	shown
below.	Now	select	Modules	>	Default	Configuration	and	scroll	down	and	you	will	see	two	sections	as	shown	in	the	image	below	in	the	Default	Configuration	section.	Here	you	will	change	the	SDK	version	according	to	your	requirement	then	click	OK	button	below.	And	you	did	it.	Note.	If	you	choose	the	second	approach,	you	don't	need	to	make	any
changes	to	Gradle.	Automatically	updates	the	degree.	Update	your	module's	gradle	script.	In	Gradle	Scripts	the	file	appears	as	build.gradle	(module:	app).	No	build.gradle(Project:	nameofproject),	this	is	an	example	plugin	to	use	gradle	file:	"com.android.application"	android	{	compileSdkVersion	22	buildToolsVersion	"25.0.0"	defaultConfig	{
applicationId	"com.project"	minSdkVersion	18	targetSdkversionCode	1	versionName	"1.0	"	}	buildTypes	{	release	{	minifyEnabled	false	proguardFiles	getDefaultProguardFile('proguard-android.txt'),	'proguard-rules.pro'	}	}	}	change	minSdkVersion	to	required.	sync	gradient	and	clean	your	design.	I	need	to	change	the	base	url	on	the	fly.	I	have	a
login	button	and	when	I	click	on	the	login	button	it	tells	me	my	login	API	as	below:	successful	response	from	the	first	API,	I	get	the	client	server	url	to	change	the	baseUrl.	companyUrlConfigEntity	companyUrlConfigEntity	=	response.body();	as	shown	below:	String	clientUrl	=	companyUrlConfigEntity.clientUrl	=	Basically	the	client	or	company	in	this
project.	So	they	have	their	own	server.	Each	company	uses	more	than	20	APIs.	So	I	need	to	change	the	base	url.	I	will	also	check	to	change	the	base	url	from	the	following	link:	and	modified	code	like	this	public	static	void	changeApiBaseUrl(String	newApiBaseUrl)	{	API_BASE_URL	=	newApiBaseUrl;	builder	=	new	Retrofit.Builder()
.baseUrl(API_BASE_URL)	.addConverterFactory(new	NullOnEmptyConverterFactory())	.addConverterFactory(ScalarsConverterFactory.create())	.addConvertersonNewcrectory)));	}	When	I	debugged	and	checked	my	baseUrl	it	looked	like	API_BASE_URL	=	But	when	I	call	the	client	API	it	turns	out	that	my	first	call	to	the	base	url	which	happened	to
be	url	didn't	change.	Expected	Customers	API:	Reality	Customers	API:	I	also	verified	from	the	following	link:	retrofit-2	-how-to-use-dynamic-urls-for-requests	which	works	but	each	API	must	pass	the	fullPath	URL	with	each	API	as	below:	@GET	public	Call	profilePicture(@Url	String	url);	But	when	using	this	method,	each	API	call	site	must	add	the	full
path	to	the	URL.	Are	there	other	options?	Help	me	please.	ServiceGenerator.class	public	class	ServiceGenerator	{	public	static	string	API_BASE_URL	=	"	;	private	static	update;	private	static	OkHttpClient.Builder	httpClient	=	new	OkHttpClient.Builder();	private	static	Retrofit.Builder	builder	=	new	Retrofit.Builder()	.baseUrl(API_BASE_URL)
.addConverterFactory(new	NullOnEmptyConverterFactory())	.addConverterFactory(ScalarsConverterFactory.create)FreadConverterFactory(ConversonGactory());	private	ServiceGenerator()	{	}	public	static	void	changeApiBaseUrl	(String	newApiBaseUrl)	{	API_BASE_URL	=	newApiBaseUrl;=	new	Retrofit.Builder()	.baseUrl(API_BASE_URL)
.addConverterFactory(new	NullOnEmptyConverterFactory())	.addConverterFactory(ScalarsConverterFactory.create())	.addConverterFactory	())	.addConverterFactory	())	.	}	public	static	S	createService(Class	serviceClass)	{	return	createService(serviceClass,	null,	null);	}	public	static	S	createService(Class	serviceClass,	final	String	authToken,	final
ProgressListener	progressListener)	{	if	(authToken	!=	null)	{	httpClient.addInterceptor(new	Interceptor()	{	@Override	public	Response	intercept(Chain	chain)	throws	IOException	{	Request	original	=	chain.request();	Final	String	headerValue	=	AUTHORIZATION_TYPE	+	authToken;	Request	request	=	original.newBuilder()
.header(AUTHORIZATION_HEADER_KEY,	headerValue).method(original.body()()),	original.	.	build();	return	chain.proceed(request);	}	});	}	addResponseProgressListener(progressListener);	if	(BuildConfig.DEBUG)	{	HttpLoggingInterceptor	httpLoggingInterceptor	=	new	HttpLoggingInterceptor();
httpLoggingInterceptor.setLevel(HttpLoggingInterceptor.Level.BODY);	httpClient.addInterceptor(httpLoggingInterceptor);	}	if	(authToken	!=	null)	{	if	(picasso	==	null)	{	setUpPicasso(authToken);	}	}	OkHttpClient	client	=	httpClient.build();	httpClient.connectTimeout(15,	TimeUnit.SECONDS);	httpClient.readTimeout(2,	TimeUnit.MINUTES);
httpClient.writeTimeout(2,	TimeUnit.MINUTES);	upgrade	=	builder.client(client).build();	return	retrograde.create(serviceClass);	}	}	LoginFragment.java	@OnClick(R.id.bt_login)	void	onLogin()	{	checkValidityOfUser();	}	private	void	checkValidityOfUser()	{	final	login	login	=	getLoginCredentials();	Call	callCheckValidity	=	dataProcessController.
getApiClient().	checkValidityOfUsers(login.getUsername());	callCheckValidity.enqueue(new	Callback()	{	@Override	public	void	onResponse(Call	call,response)	{	if	(response.code()	==	200)	{	companyUrlConfigEntity	companyUrlConfigEntity	=	response.body();	boolean	status	=	firmUrlConfigEntity.isValidUser();	if	(	status	)	{	String	baseUrls	=
companyUrlConfigEntity	.	getBaseUrl();	baseUrls	=	baseUrls	+	"/api/";	ServiceGenerator.changeApiBaseUrl(baseUrls);	Log	in();	}	else	{	ToastHelper.show("contact	admin");	}	}	else	{	ToastHelper.show(""	+	response.code()	+	response.message());	}	}	@Override	public	void	onFailure(Call	call,	Throwable	t)	{	ToastHelper.show("Contact	Admin");	}	});
}	private	cannot	login()	{	login	=	getLoginCredentials();	Call	callLogin	=	DataProcessController.	getApiClient().	login	(login);	callLogin.enqueue(new	Callback()	{	@Override	public	void	onResponse(Call	call,	Response	response)	{	if	(response.code()	==	200)	{	}	else	if	(response.code	()	==	401)	{	}	}	@Override	public	void	onFailure(Call	call,
Throwable	t)	{	}	});	}	}




