
	

Continue

https://allytemp.ru/uplcv?utm_term=flask+redirect+with+parameters

Flask	redirect	with	parameters

[{	"type":	"thumb-down",	"id":	"missingTheInformationINeed",	"label":"Missing	the	information	I	need"	},{	"type":	"thumb-down",	"id":	"tooComplicatedTooManySteps",	"label":"Too	complicated	/	too	many	steps"	},{	"type":	"thumb-down",	"id":	"outOfDate",	"label":"Out	of	date"	},{	"type":	"thumb-down",	"id":	"samplesCodeIssue",
"label":"Samples/Code	issue"	},{	"type":	"thumb-down",	"id":	"otherDown",	"label":"Other"	}]	[{	"type":	"thumb-up",	"id":	"easyToUnderstand",	"label":"Easy	to	understand"	},{	"type":	"thumb-up",	"id":	"solvedMyProblem",	"label":"Solved	my	problem"	},{	"type":	"thumb-up",	"id":	"otherUp",	"label":"Other"	}]	This	document	explains	how	web	server
applications	use	Google	API	Client	Libraries	or	Google	OAuth	2.0	endpoints	to	implement	OAuth	2.0	authorization	to	access	Google	APIs.	OAuth	2.0	allows	users	to	share	specific	data	with	an	application	while	keeping	their	usernames,	passwords,	and	other	information	private.	For	example,	an	application	can	use	OAuth	2.0	to	obtain	permission	from
users	to	store	files	in	their	Google	Drives.	This	OAuth	2.0	flow	is	specifically	for	user	authorization.	It	is	designed	for	applications	that	can	store	confidential	information	and	maintain	state.	A	properly	authorized	web	server	application	can	access	an	API	while	the	user	interacts	with	the	application	or	after	the	user	has	left	the	application.	Web	server
applications	frequently	also	use	service	accounts	to	authorize	API	requests,	particularly	when	calling	Cloud	APIs	to	access	project-based	data	rather	than	user-specific	data.	Web	server	applications	can	use	service	accounts	in	conjunction	with	user	authorization.	Note:	Given	the	security	implications	of	getting	the	implementation	correct,	we	strongly
encourage	you	to	use	OAuth	2.0	libraries	when	interacting	with	Google's	OAuth	2.0	endpoints.	It	is	a	best	practice	to	use	well-debugged	code	provided	by	others,	and	it	will	help	you	protect	yourself	and	your	users.	For	more	information,	see	Client	libraries.	Client	libraries	The	language-specific	examples	on	this	page	use	Google	API	Client	Libraries	to
implement	OAuth	2.0	authorization.	To	run	the	code	samples,	you	must	first	install	the	client	library	for	your	language.	When	you	use	a	Google	API	Client	Library	to	handle	your	application's	OAuth	2.0	flow,	the	client	library	performs	many	actions	that	the	application	would	otherwise	need	to	handle	on	its	own.	For	example,	it	determines	when	the
application	can	use	or	refresh	stored	access	tokens	as	well	as	when	the	application	must	reacquire	consent.	The	client	library	also	generates	correct	redirect	URLs	and	helps	to	implement	redirect	handlers	that	exchange	authorization	codes	for	access	tokens.	Client	libraries	are	available	for	the	following	languages:	Go	Java	.NET	Node.js	PHP	Python
Ruby	Prerequisites	Enable	APIs	for	your	project	Any	application	that	calls	Google	APIs	needs	to	enable	those	APIs	in	the	API	Console.	To	enable	an	API	for	your	project:	Open	the	API	Library	in	the	Google	API	Console.	If	prompted,	select	a	project,	or	create	a	new	one.	The	API	Library	lists	all	available	APIs,	grouped	by	product	family	and	popularity.	If
the	API	you	want	to	enable	isn't	visible	in	the	list,	use	search	to	find	it,	or	click	View	All	in	the	product	family	it	belongs	to.	Select	the	API	you	want	to	enable,	then	click	the	Enable	button.	If	prompted,	enable	billing.	If	prompted,	read	and	accept	the	API's	Terms	of	Service.	Create	authorization	credentials	Any	application	that	uses	OAuth	2.0	to	access
Google	APIs	must	have	authorization	credentials	that	identify	the	application	to	Google's	OAuth	2.0	server.	The	following	steps	explain	how	to	create	credentials	for	your	project.	Your	applications	can	then	use	the	credentials	to	access	APIs	that	you	have	enabled	for	that	project.	Go	to	the	Credentials	page.	Click	Create	credentials	>	OAuth	client	ID.
Select	the	Web	application	application	type.	Fill	in	the	form	and	click	Create.	Applications	that	use	languages	and	frameworks	like	PHP,	Java,	Python,	Ruby,	and	.NET	must	specify	authorized	redirect	URIs.	The	redirect	URIs	are	the	endpoints	to	which	the	OAuth	2.0	server	can	send	responses.	These	endpoints	must	adhere	to	Google’s	validation	rules.
For	testing,	you	can	specify	URIs	that	refer	to	the	local	machine,	such	as	.	With	that	in	mind,	please	note	that	all	of	the	examples	in	this	document	use	as	the	redirect	URI.	We	recommend	that	you	design	your	app's	auth	endpoints	so	that	your	application	does	not	expose	authorization	codes	to	other	resources	on	the	page.	After	creating	your
credentials,	download	the	client_secret.json	file	from	the	API	Console.	Securely	store	the	file	in	a	location	that	only	your	application	can	access.	Important:	Do	not	store	the	client_secret.json	file	in	a	publicly-accessible	location.	In	addition,	if	you	share	the	source	code	to	your	application	—	for	example,	on	GitHub	—	store	the	client_secret.json	file
outside	of	your	source	tree	to	avoid	inadvertently	sharing	your	client	credentials.	Identify	access	scopes	Scopes	enable	your	application	to	only	request	access	to	the	resources	that	it	needs	while	also	enabling	users	to	control	the	amount	of	access	that	they	grant	to	your	application.	Thus,	there	may	be	an	inverse	relationship	between	the	number	of
scopes	requested	and	the	likelihood	of	obtaining	user	consent.	Before	you	start	implementing	OAuth	2.0	authorization,	we	recommend	that	you	identify	the	scopes	that	your	app	will	need	permission	to	access.	We	also	recommend	that	your	application	request	access	to	authorization	scopes	via	an	incremental	authorization	process,	in	which	your
application	requests	access	to	user	data	in	context.	This	best	practice	helps	users	to	more	easily	understand	why	your	application	needs	the	access	it	is	requesting.	The	OAuth	2.0	API	Scopes	document	contains	a	full	list	of	scopes	that	you	might	use	to	access	Google	APIs.	If	your	public	application	uses	scopes	that	permit	access	to	certain	user	data,	it
must	complete	a	verification	process.	If	you	see	unverified	app	on	the	screen	when	testing	your	application,	you	must	submit	a	verification	request	to	remove	it.	Find	out	more	about	unverified	apps	and	get	answers	to	frequently	asked	questions	about	app	verification	in	the	Help	Center.	Language-specific	requirements	To	run	any	of	the	code	samples
in	this	document,	you'll	need	a	Google	account,	access	to	the	Internet,	and	a	web	browser.	If	you	are	using	one	of	the	API	client	libraries,	also	see	the	language-specific	requirements	below.	To	run	the	PHP	code	samples	in	this	document,	you'll	need:	PHP	5.4	or	greater	with	the	command-line	interface	(CLI)	and	JSON	extension	installed.	The
Composer	dependency	management	tool.	The	Google	APIs	Client	Library	for	PHP:	php	composer.phar	require	google/apiclient:^2.0	To	run	the	Python	code	samples	in	this	document,	you'll	need:	Python	2.6	or	greater	The	pip	package	management	tool.	The	Google	APIs	Client	Library	for	Python:	pip	install	--upgrade	google-api-python-client	The
google-auth,	google-auth-oauthlib,	and	google-auth-httplib2	for	user	authorization.	pip	install	--upgrade	google-auth	google-auth-oauthlib	google-auth-httplib2	The	Flask	Python	web	application	framework.	pip	install	--upgrade	flask	The	requests	HTTP	library.	pip	install	--upgrade	requests	To	run	the	Ruby	code	samples	in	this	document,	you'll	need:
Ruby	2.2.2	or	greater	The	Google	APIs	Client	Library	for	Ruby:	gem	install	google-api-client	The	Sinatra	Ruby	web	application	framework.	gem	install	sinatra	You	do	not	need	to	install	any	libraries	to	be	able	to	directly	call	the	OAuth	2.0	endpoints.	The	following	steps	show	how	your	application	interacts	with	Google's	OAuth	2.0	server	to	obtain	a
user's	consent	to	perform	an	API	request	on	the	user's	behalf.	Your	application	must	have	that	consent	before	it	can	execute	a	Google	API	request	that	requires	user	authorization.	The	list	below	quickly	summarizes	these	steps:	Your	application	identifies	the	permissions	it	needs.	Your	application	redirects	the	user	to	Google	along	with	the	list	of
requested	permissions.	The	user	decides	whether	to	grant	the	permissions	to	your	application.	Your	application	finds	out	what	the	user	decided.	If	the	user	granted	the	requested	permissions,	your	application	retrieves	tokens	needed	to	make	API	requests	on	the	user's	behalf.	Step	1:	Set	authorization	parameters	Your	first	step	is	to	create	the
authorization	request.	That	request	sets	parameters	that	identify	your	application	and	define	the	permissions	that	the	user	will	be	asked	to	grant	to	your	application.	If	you	use	a	Google	client	library	for	OAuth	2.0	authentication	and	authorization,	you	create	and	configure	an	object	that	defines	these	parameters.	If	you	call	the	Google	OAuth	2.0
endpoint	directly,	you'll	generate	a	URL	and	set	the	parameters	on	that	URL.	The	tabs	below	define	the	supported	authorization	parameters	for	web	server	applications.	The	language-specific	examples	also	show	how	to	use	a	client	library	or	authorization	library	to	configure	an	object	that	sets	those	parameters.	The	code	snippet	below	creates	a
Google_Client()	object,	which	defines	the	parameters	in	the	authorization	request.	That	object	uses	information	from	your	client_secret.json	file	to	identify	your	application.	(See	creating	authorization	credentials	for	more	about	that	file.)	The	object	also	identifies	the	scopes	that	your	application	is	requesting	permission	to	access	and	the	URL	to	your
application's	auth	endpoint,	which	will	handle	the	response	from	Google's	OAuth	2.0	server.	Finally,	the	code	sets	the	optional	access_type	and	include_granted_scopes	parameters.	For	example,	this	code	requests	read-only,	offline	access	to	a	user's	Google	Drive:	$client	=	new	Google_Client();	$client->setAuthConfig('client_secret.json');	$client-
>addScope(Google_Service_Drive::DRIVE_METADATA_READONLY);	$client->setRedirectUri('http://'	.	$_SERVER['HTTP_HOST']	.	'/oauth2callback.php');	//	offline	access	will	give	you	both	an	access	and	refresh	token	so	that	//	your	app	can	refresh	the	access	token	without	user	interaction.	$client->setAccessType('offline');	//	Using	"consent"	ensures
that	your	application	always	receives	a	refresh	token.	//	If	you	are	not	using	offline	access,	you	can	omit	this.	$client->setApprovalPrompt("consent");	$client->setIncludeGrantedScopes(true);	//	incremental	auth	The	request	specifies	the	following	information:	Parameters	client_id	Required	The	client	ID	for	your	application.	You	can	find	this	value	in
the	API	Console	Credentials	page.	In	PHP,	call	the	setAuthConfig	function	to	load	authorization	credentials	from	a	client_secret.json	file.	$client	=	new	Google_Client();	$client->setAuthConfig('client_secret.json');	redirect_uri	Required	Determines	where	the	API	server	redirects	the	user	after	the	user	completes	the	authorization	flow.	The	value	must
exactly	match	one	of	the	authorized	redirect	URIs	for	the	OAuth	2.0	client,	which	you	configured	in	your	client's	API	Console	Credentials	page.	If	this	value	doesn't	match	an	authorized	redirect	URI	for	the	provided	client_id	you	will	get	a	redirect_uri_mismatch	error.	Note	that	the	http	or	https	scheme,	case,	and	trailing	slash	('/')	must	all	match.	To
set	this	value	in	PHP,	call	the	setRedirectUri	function.	Note	that	you	must	specify	a	valid	redirect	URI	for	the	provided	client_id.	$client->setRedirectUri(');	scope	Required	A	space-delimited	list	of	scopes	that	identify	the	resources	that	your	application	could	access	on	the	user's	behalf.	These	values	inform	the	consent	screen	that	Google	displays	to
the	user.	Scopes	enable	your	application	to	only	request	access	to	the	resources	that	it	needs	while	also	enabling	users	to	control	the	amount	of	access	that	they	grant	to	your	application.	Thus,	there	is	an	inverse	relationship	between	the	number	of	scopes	requested	and	the	likelihood	of	obtaining	user	consent.	To	set	this	value	in	PHP,	call	the
addScope	function:	$client->addScope(Google_Service_Drive::DRIVE_METADATA_READONLY);	We	recommend	that	your	application	request	access	to	authorization	scopes	in	context	whenever	possible.	By	requesting	access	to	user	data	in	context,	via	incremental	authorization,	you	help	users	to	more	easily	understand	why	your	application	needs
the	access	it	is	requesting.	access_type	Recommended	Indicates	whether	your	application	can	refresh	access	tokens	when	the	user	is	not	present	at	the	browser.	Valid	parameter	values	are	online,	which	is	the	default	value,	and	offline.	Set	the	value	to	offline	if	your	application	needs	to	refresh	access	tokens	when	the	user	is	not	present	at	the
browser.	This	is	the	method	of	refreshing	access	tokens	described	later	in	this	document.	This	value	instructs	the	Google	authorization	server	to	return	a	refresh	token	and	an	access	token	the	first	time	that	your	application	exchanges	an	authorization	code	for	tokens.	To	set	this	value	in	PHP,	call	the	setAccessType	function:	$client-
>setAccessType('offline');	state	Recommended	Specifies	any	string	value	that	your	application	uses	to	maintain	state	between	your	authorization	request	and	the	authorization	server's	response.	The	server	returns	the	exact	value	that	you	send	as	a	name=value	pair	in	the	URL	query	component	(?)	of	the	redirect_uri	after	the	user	consents	to	or
denies	your	application's	access	request.	You	can	use	this	parameter	for	several	purposes,	such	as	directing	the	user	to	the	correct	resource	in	your	application,	sending	nonces,	and	mitigating	cross-site	request	forgery.	Since	your	redirect_uri	can	be	guessed,	using	a	state	value	can	increase	your	assurance	that	an	incoming	connection	is	the	result	of
an	authentication	request.	If	you	generate	a	random	string	or	encode	the	hash	of	a	cookie	or	another	value	that	captures	the	client's	state,	you	can	validate	the	response	to	additionally	ensure	that	the	request	and	response	originated	in	the	same	browser,	providing	protection	against	attacks	such	as	cross-site	request	forgery.	See	the	OpenID	Connect
documentation	for	an	example	of	how	to	create	and	confirm	a	state	token.	To	set	this	value	in	PHP,	call	the	setState	function:	$client->setState($sample_passthrough_value);	include_granted_scopes	Optional	Enables	applications	to	use	incremental	authorization	to	request	access	to	additional	scopes	in	context.	If	you	set	this	parameter's	value	to	true
and	the	authorization	request	is	granted,	then	the	new	access	token	will	also	cover	any	scopes	to	which	the	user	previously	granted	the	application	access.	See	the	incremental	authorization	section	for	examples.	To	set	this	value	in	PHP,	call	the	setIncludeGrantedScopes	function:	$client->setIncludeGrantedScopes(true);	prompt	Optional	A	space-
delimited,	case-sensitive	list	of	prompts	to	present	the	user.	If	you	don't	specify	this	parameter,	the	user	will	be	prompted	only	the	first	time	your	project	requests	access.	See	Prompting	re-consent	for	more	information.	To	set	this	value	in	PHP,	call	the	setApprovalPrompt	function:	$client->setApprovalPrompt('consent');	Possible	values	are:	none	Do
not	display	any	authentication	or	consent	screens.	Must	not	be	specified	with	other	values.	consent	Prompt	the	user	for	consent.	select_account	Prompt	the	user	to	select	an	account.	The	following	code	snippet	uses	the	google-auth-oauthlib.flow	module	to	construct	the	authorization	request.	The	code	constructs	a	Flow	object,	which	identifies	your
application	using	information	from	the	client_secret.json	file	that	you	downloaded	after	creating	authorization	credentials.	That	object	also	identifies	the	scopes	that	your	application	is	requesting	permission	to	access	and	the	URL	to	your	application's	auth	endpoint,	which	will	handle	the	response	from	Google's	OAuth	2.0	server.	Finally,	the	code	sets
the	optional	access_type	and	include_granted_scopes	parameters.	For	example,	this	code	requests	read-only,	offline	access	to	a	user's	Google	Drive:	import	google.oauth2.credentials	import	google_auth_oauthlib.flow	#	Use	the	client_secret.json	file	to	identify	the	application	requesting	#	authorization.	The	client	ID	(from	that	file)	and	access	scopes
are	required.	flow	=	google_auth_oauthlib.flow.Flow.from_client_secrets_file('client_secret.json',	scopes=['])	#	Indicate	where	the	API	server	will	redirect	the	user	after	the	user	completes	#	the	authorization	flow.	The	redirect	URI	is	required.	The	value	must	exactly	#	match	one	of	the	authorized	redirect	URIs	for	the	OAuth	2.0	client,	which	you	#
configured	in	the	API	Console.	If	this	value	doesn't	match	an	authorized	URI,	#	you	will	get	a	'redirect_uri_mismatch'	error.	flow.redirect_uri	=	'	#	Generate	URL	for	request	to	Google's	OAuth	2.0	server.	#	Use	kwargs	to	set	optional	request	parameters.	authorization_url,	state	=	flow.authorization_url(#	Enable	offline	access	so	that	you	can	refresh
an	access	token	without	#	re-prompting	the	user	for	permission.	Recommended	for	web	server	apps.	access_type='offline',	#	Enable	incremental	authorization.	Recommended	as	a	best	practice.	include_granted_scopes='true')	The	request	specifies	the	following	information:	Parameters	client_id	Required	The	client	ID	for	your	application.	You	can
find	this	value	in	the	API	Console	Credentials	page.	In	Python,	call	the	from_client_secrets_file	method	to	retrieve	the	client	ID	from	a	client_secret.json	file.	(You	can	also	use	the	from_client_config	method,	which	passes	the	client	configuration	as	it	originally	appeared	in	a	client	secrets	file	but	doesn't	access	the	file	itself.)	flow	=
google_auth_oauthlib.flow.Flow.from_client_secrets_file('client_secret.json',	scopes=['])	redirect_uri	Required	Determines	where	the	API	server	redirects	the	user	after	the	user	completes	the	authorization	flow.	The	value	must	exactly	match	one	of	the	authorized	redirect	URIs	for	the	OAuth	2.0	client,	which	you	configured	in	your	client's	API
Console	Credentials	page.	If	this	value	doesn't	match	an	authorized	redirect	URI	for	the	provided	client_id	you	will	get	a	redirect_uri_mismatch	error.	Note	that	the	http	or	https	scheme,	case,	and	trailing	slash	('/')	must	all	match.	To	set	this	value	in	Python,	set	the	flow	object's	redirect_uri	property:	flow.redirect_uri	=	'	scope	Required	A	list	of	scopes
that	identify	the	resources	that	your	application	could	access	on	the	user's	behalf.	These	values	inform	the	consent	screen	that	Google	displays	to	the	user.	Scopes	enable	your	application	to	only	request	access	to	the	resources	that	it	needs	while	also	enabling	users	to	control	the	amount	of	access	that	they	grant	to	your	application.	Thus,	there	is	an
inverse	relationship	between	the	number	of	scopes	requested	and	the	likelihood	of	obtaining	user	consent.	In	Python,	use	the	same	method	you	use	to	set	the	client_id	to	specify	the	list	of	scopes.	flow	=	google_auth_oauthlib.flow.Flow.from_client_secrets_file('client_secret.json',	scopes=['])	We	recommend	that	your	application	request	access	to
authorization	scopes	in	context	whenever	possible.	By	requesting	access	to	user	data	in	context,	via	incremental	authorization,	you	help	users	to	more	easily	understand	why	your	application	needs	the	access	it	is	requesting.	access_type	Recommended	Indicates	whether	your	application	can	refresh	access	tokens	when	the	user	is	not	present	at	the
browser.	Valid	parameter	values	are	online,	which	is	the	default	value,	and	offline.	Set	the	value	to	offline	if	your	application	needs	to	refresh	access	tokens	when	the	user	is	not	present	at	the	browser.	This	is	the	method	of	refreshing	access	tokens	described	later	in	this	document.	This	value	instructs	the	Google	authorization	server	to	return	a
refresh	token	and	an	access	token	the	first	time	that	your	application	exchanges	an	authorization	code	for	tokens.	In	Python,	set	the	access_type	parameter	by	specifying	access_type	as	a	keyword	argument	when	calling	the	flow.authorization_url	method:	authorization_url,	state	=	flow.authorization_url(access_type='offline',
include_granted_scopes='true')	state	Recommended	Specifies	any	string	value	that	your	application	uses	to	maintain	state	between	your	authorization	request	and	the	authorization	server's	response.	The	server	returns	the	exact	value	that	you	send	as	a	name=value	pair	in	the	URL	query	component	(?)	of	the	redirect_uri	after	the	user	consents	to	or
denies	your	application's	access	request.	You	can	use	this	parameter	for	several	purposes,	such	as	directing	the	user	to	the	correct	resource	in	your	application,	sending	nonces,	and	mitigating	cross-site	request	forgery.	Since	your	redirect_uri	can	be	guessed,	using	a	state	value	can	increase	your	assurance	that	an	incoming	connection	is	the	result	of
an	authentication	request.	If	you	generate	a	random	string	or	encode	the	hash	of	a	cookie	or	another	value	that	captures	the	client's	state,	you	can	validate	the	response	to	additionally	ensure	that	the	request	and	response	originated	in	the	same	browser,	providing	protection	against	attacks	such	as	cross-site	request	forgery.	See	the	OpenID	Connect
documentation	for	an	example	of	how	to	create	and	confirm	a	state	token.	In	Python,	set	the	state	parameter	by	specifying	state	as	a	keyword	argument	when	calling	the	flow.authorization_url	method:	authorization_url,	state	=	flow.authorization_url(access_type='offline',	state=sample_passthrough_value,	include_granted_scopes='true')
include_granted_scopes	Optional	Enables	applications	to	use	incremental	authorization	to	request	access	to	additional	scopes	in	context.	If	you	set	this	parameter's	value	to	true	and	the	authorization	request	is	granted,	then	the	new	access	token	will	also	cover	any	scopes	to	which	the	user	previously	granted	the	application	access.	See	the
incremental	authorization	section	for	examples.	In	Python,	set	the	include_granted_scopes	parameter	by	specifying	include_granted_scopes	as	a	keyword	argument	when	calling	the	flow.authorization_url	method:	authorization_url,	state	=	flow.authorization_url(access_type='offline',	include_granted_scopes='true')	prompt	Optional	A	space-delimited,
case-sensitive	list	of	prompts	to	present	the	user.	If	you	don't	specify	this	parameter,	the	user	will	be	prompted	only	the	first	time	your	project	requests	access.	See	Prompting	re-consent	for	more	information.	In	Python,	set	the	prompt	parameter	by	specifying	prompt	as	a	keyword	argument	when	calling	the	flow.authorization_url	method:
authorization_url,	state	=	flow.authorization_url(access_type='offline',	prompt='consent',	include_granted_scopes='true')	Possible	values	are:	none	Do	not	display	any	authentication	or	consent	screens.	Must	not	be	specified	with	other	values.	consent	Prompt	the	user	for	consent.	select_account	Prompt	the	user	to	select	an	account.	Use	the
client_secrets.json	file	that	you	created	to	configure	a	client	object	in	your	application.	When	you	configure	a	client	object,	you	specify	the	scopes	your	application	needs	to	access,	along	with	the	URL	to	your	application's	auth	endpoint,	which	will	handle	the	response	from	the	OAuth	2.0	server.	For	example,	this	code	requests	read-only,	offline	access
to	a	user's	Google	Drive:	require	'google/apis/drive_v2'	require	'google/api_client/client_secrets'	client_secrets	=	Google::APIClient::ClientSecrets.load	auth_client	=	client_secrets.to_authorization	auth_client.update!(:scope	=>	'	,	:redirect_uri	=>	'	,	:additional_parameters	=>	{	"access_type"	=>	"offline",	#	offline	access	"include_granted_scopes"	=>
"true"	#	incremental	auth	})	Your	application	uses	the	client	object	to	perform	OAuth	2.0	operations,	such	as	generating	authorization	request	URLs	and	applying	access	tokens	to	HTTP	requests.	Google's	OAuth	2.0	endpoint	is	at	.	This	endpoint	is	accessible	only	over	HTTPS.	Plain	HTTP	connections	are	refused.	The	Google	authorization	server
supports	the	following	query	string	parameters	for	web	server	applications:	Parameters	client_id	Required	The	client	ID	for	your	application.	You	can	find	this	value	in	the	API	Console	Credentials	page.	redirect_uri	Required	Determines	where	the	API	server	redirects	the	user	after	the	user	completes	the	authorization	flow.	The	value	must	exactly
match	one	of	the	authorized	redirect	URIs	for	the	OAuth	2.0	client,	which	you	configured	in	your	client's	API	Console	Credentials	page.	If	this	value	doesn't	match	an	authorized	redirect	URI	for	the	provided	client_id	you	will	get	a	redirect_uri_mismatch	error.	Note	that	the	http	or	https	scheme,	case,	and	trailing	slash	('/')	must	all	match.
response_type	Required	Determines	whether	the	Google	OAuth	2.0	endpoint	returns	an	authorization	code.	Set	the	parameter	value	to	code	for	web	server	applications.	scope	Required	A	space-delimited	list	of	scopes	that	identify	the	resources	that	your	application	could	access	on	the	user's	behalf.	These	values	inform	the	consent	screen	that	Google
displays	to	the	user.	Scopes	enable	your	application	to	only	request	access	to	the	resources	that	it	needs	while	also	enabling	users	to	control	the	amount	of	access	that	they	grant	to	your	application.	Thus,	there	is	an	inverse	relationship	between	the	number	of	scopes	requested	and	the	likelihood	of	obtaining	user	consent.	We	recommend	that	your
application	request	access	to	authorization	scopes	in	context	whenever	possible.	By	requesting	access	to	user	data	in	context,	via	incremental	authorization,	you	help	users	to	more	easily	understand	why	your	application	needs	the	access	it	is	requesting.	access_type	Recommended	Indicates	whether	your	application	can	refresh	access	tokens	when
the	user	is	not	present	at	the	browser.	Valid	parameter	values	are	online,	which	is	the	default	value,	and	offline.	Set	the	value	to	offline	if	your	application	needs	to	refresh	access	tokens	when	the	user	is	not	present	at	the	browser.	This	is	the	method	of	refreshing	access	tokens	described	later	in	this	document.	This	value	instructs	the	Google
authorization	server	to	return	a	refresh	token	and	an	access	token	the	first	time	that	your	application	exchanges	an	authorization	code	for	tokens.	state	Recommended	Specifies	any	string	value	that	your	application	uses	to	maintain	state	between	your	authorization	request	and	the	authorization	server's	response.	The	server	returns	the	exact	value
that	you	send	as	a	name=value	pair	in	the	URL	query	component	(?)	of	the	redirect_uri	after	the	user	consents	to	or	denies	your	application's	access	request.	You	can	use	this	parameter	for	several	purposes,	such	as	directing	the	user	to	the	correct	resource	in	your	application,	sending	nonces,	and	mitigating	cross-site	request	forgery.	Since	your
redirect_uri	can	be	guessed,	using	a	state	value	can	increase	your	assurance	that	an	incoming	connection	is	the	result	of	an	authentication	request.	If	you	generate	a	random	string	or	encode	the	hash	of	a	cookie	or	another	value	that	captures	the	client's	state,	you	can	validate	the	response	to	additionally	ensure	that	the	request	and	response
originated	in	the	same	browser,	providing	protection	against	attacks	such	as	cross-site	request	forgery.	See	the	OpenID	Connect	documentation	for	an	example	of	how	to	create	and	confirm	a	state	token.	include_granted_scopes	Optional	Enables	applications	to	use	incremental	authorization	to	request	access	to	additional	scopes	in	context.	If	you	set
this	parameter's	value	to	true	and	the	authorization	request	is	granted,	then	the	new	access	token	will	also	cover	any	scopes	to	which	the	user	previously	granted	the	application	access.	See	the	incremental	authorization	section	for	examples.	prompt	Optional	A	space-delimited,	case-sensitive	list	of	prompts	to	present	the	user.	If	you	don't	specify	this
parameter,	the	user	will	be	prompted	only	the	first	time	your	project	requests	access.	See	Prompting	re-consent	for	more	information.	Possible	values	are:	none	Do	not	display	any	authentication	or	consent	screens.	Must	not	be	specified	with	other	values.	consent	Prompt	the	user	for	consent.	select_account	Prompt	the	user	to	select	an	account.
Redirect	the	user	to	Google's	OAuth	2.0	server	to	initiate	the	authentication	and	authorization	process.	Typically,	this	occurs	when	your	application	first	needs	to	access	the	user's	data.	In	the	case	of	incremental	authorization,	this	step	also	occurs	when	your	application	first	needs	to	access	additional	resources	that	it	does	not	yet	have	permission	to
access.	Generate	a	URL	to	request	access	from	Google's	OAuth	2.0	server:	$auth_url	=	$client->createAuthUrl();	Redirect	the	user	to	$auth_url:	header('Location:	'	.	filter_var($auth_url,	FILTER_SANITIZE_URL));	This	example	shows	how	to	redirect	the	user	to	the	authorization	URL	using	the	Flask	web	application	framework:	return
flask.redirect(authorization_url)	Generate	a	URL	to	request	access	from	Google's	OAuth	2.0	server:	auth_uri	=	auth_client.authorization_uri.to_s	Redirect	the	user	to	auth_uri.	An	example	URL	is	shown	below,	with	line	breaks	and	spaces	for	readability.	scope=https%3A//www.googleapis.com/auth/drive.metadata.readonly&	access_type=offline&
include_granted_scopes=true&	response_type=code&	state=state_parameter_passthrough_value&	redirect_uri=https%3A//oauth2.example.com/code&	client_id=client_id	After	you	create	the	request	URL,	redirect	the	user	to	it.	Google's	OAuth	2.0	server	authenticates	the	user	and	obtains	consent	from	the	user	for	your	application	to	access	the
requested	scopes.	The	response	is	sent	back	to	your	application	using	the	redirect	URL	you	specified.	Step	3:	Google	prompts	user	for	consent	In	this	step,	the	user	decides	whether	to	grant	your	application	the	requested	access.	At	this	stage,	Google	displays	a	consent	window	that	shows	the	name	of	your	application	and	the	Google	API	services	that
it	is	requesting	permission	to	access	with	the	user's	authorization	credentials	and	a	summary	of	the	scopes	of	access	to	be	granted.	The	user	can	then	consent	to	grant	access	to	one	or	more	scopes	requested	by	your	application	or	refuse	the	request.	Your	application	doesn't	need	to	do	anything	at	this	stage	as	it	waits	for	the	response	from	Google's
OAuth	2.0	server	indicating	whether	any	access	was	granted.	That	response	is	explained	in	the	following	step.	Requests	to	Google's	OAuth	2.0	authorization	endpoint	may	display	user-facing	error	messages	instead	of	the	expected	authentication	and	authorization	flows.	Common	error	codes	and	suggested	resolutions	are	listed	below.	The	Google
Account	is	unable	to	authorize	one	or	more	scopes	requested	due	to	the	policies	of	their	Google	Workspace	administrator.	See	the	Google	Workspace	Admin	help	article	Control	which	third-party	&	internal	apps	access	Google	Workspace	data	for	more	information	about	how	an	administrator	may	restrict	access	to	all	scopes	or	sensitive	and	restricted
scopes	until	access	is	explicitly	granted	to	your	OAuth	client	ID.	The	authorization	endpoint	is	displayed	inside	an	embedded	user-agent	disallowed	by	Google's	OAuth	2.0	Policies.	Android	developers	may	encounter	this	error	message	when	opening	authorization	requests	in	android.webkit.WebView.	Developers	should	instead	use	Android	libraries
such	as	Google	Sign-In	for	Android	or	OpenID	Foundation's	AppAuth	for	Android.	Web	developers	may	encounter	this	error	when	an	Android	app	opens	a	general	web	link	in	an	embedded	user-agent	and	a	user	navigates	to	Google's	OAuth	2.0	authorization	endpoint	from	your	site.	Developers	should	allow	general	links	to	open	in	the	default	link
handler	of	the	operating	system,	which	includes	both	Android	App	Links	handlers	or	the	default	browser	app.	The	Android	Custom	Tabs	library	is	also	a	supported	option.	iOS	and	macOS	developers	may	encounter	this	error	when	opening	authorization	requests	in	WKWebView.	Developers	should	instead	use	iOS	libraries	such	as	Google	Sign-In	for
iOS	or	OpenID	Foundation's	AppAuth	for	iOS.	Web	developers	may	encounter	this	error	when	an	iOS	or	macOS	app	opens	a	general	web	link	in	an	embedded	user-agent	and	a	user	navigates	to	Google's	OAuth	2.0	authorization	endpoint	from	your	site.	Developers	should	allow	general	links	to	open	in	the	default	link	handler	of	the	operating	system,
which	includes	both	Universal	Links	handlers	or	the	default	browser	app.	The	SFSafariViewController	library	is	also	a	supported	option.	The	OAuth	client	ID	in	the	request	is	part	of	a	project	limiting	access	to	Google	Accounts	in	a	specific	Google	Cloud	Organization.	For	more	information	about	this	configuration	option	see	the	User	type	section	in	the
Setting	up	your	OAuth	consent	screen	help	article.	The	redirect_uri	passed	in	the	authorization	request	does	not	match	an	authorized	redirect	URI	for	the	OAuth	client	ID.	Review	authorized	redirect	URIs	in	the	Google	API	Console	Credentials	page.	Step	4:	Handle	the	OAuth	2.0	server	response	The	OAuth	2.0	server	responds	to	your	application's
access	request	by	using	the	URL	specified	in	the	request.	If	the	user	approves	the	access	request,	then	the	response	contains	an	authorization	code.	If	the	user	does	not	approve	the	request,	the	response	contains	an	error	message.	The	authorization	code	or	error	message	that	is	returned	to	the	web	server	appears	on	the	query	string,	as	shown
below:	An	error	response:	An	authorization	code	response:	Important:	If	your	response	endpoint	renders	an	HTML	page,	any	resources	on	that	page	will	be	able	to	see	the	authorization	code	in	the	URL.	Scripts	can	read	the	URL	directly,	and	the	URL	in	the	Referer	HTTP	header	may	be	sent	to	any	or	all	resources	on	the	page.	Carefully	consider
whether	you	want	to	send	authorization	credentials	to	all	resources	on	that	page	(especially	third-party	scripts	such	as	social	plugins	and	analytics).	To	avoid	this	issue,	we	recommend	that	the	server	first	handle	the	request,	then	redirect	to	another	URL	that	doesn't	include	the	response	parameters.	Sample	OAuth	2.0	server	response	You	can	test
this	flow	by	clicking	on	the	following	sample	URL,	which	requests	read-only	access	to	view	metadata	for	files	in	your	Google	Drive:	scope=https%3A//www.googleapis.com/auth/drive.metadata.readonly&	access_type=offline&	include_granted_scopes=true&	response_type=code&	state=state_parameter_passthrough_value&
redirect_uri=https%3A//oauth2.example.com/code&	client_id=client_id	After	completing	the	OAuth	2.0	flow,	you	should	be	redirected	to	which	will	likely	yield	a	404	NOT	FOUND	error	unless	your	local	machine	serves	a	file	at	that	address.	The	next	step	provides	more	detail	about	the	information	returned	in	the	URI	when	the	user	is	redirected	back
to	your	application.	After	the	web	server	receives	the	authorization	code,	it	can	exchange	the	authorization	code	for	an	access	token.	To	exchange	an	authorization	code	for	an	access	token,	use	the	authenticate	method:	$client->authenticate($_GET['code']);	You	can	retrieve	the	access	token	with	the	getAccessToken	method:	$access_token	=	$client-
>getAccessToken();	On	your	callback	page,	use	the	google-auth	library	to	verify	the	authorization	server	response.	Then,	use	the	flow.fetch_token	method	to	exchange	the	authorization	code	in	that	response	for	an	access	token:	state	=	flask.session['state']	flow	=	google_auth_oauthlib.flow.Flow.from_client_secrets_file('client_secret.json',	scopes=['],
state=state)	flow.redirect_uri	=	flask.url_for('oauth2callback',	_external=True)	authorization_response	=	flask.request.url	flow.fetch_token(authorization_response=authorization_response)	#	Store	the	credentials	in	the	session.	#	ACTION	ITEM	for	developers:	#	Store	user's	access	and	refresh	tokens	in	your	data	store	if	#	incorporating	this	code
into	your	real	app.	credentials	=	flow.credentials	flask.session['credentials']	=	{	'token':	credentials.token,	'refresh_token':	credentials.refresh_token,	'token_uri':	credentials.token_uri,	'client_id':	credentials.client_id,	'client_secret':	credentials.client_secret,	'scopes':	credentials.scopes}	To	exchange	an	authorization	code	for	an	access	token,	use	the
fetch_access_token!	method:	auth_client.code	=	auth_code	auth_client.fetch_access_token!	To	exchange	an	authorization	code	for	an	access	token,	call	the	endpoint	and	set	the	following	parameters:	Fields	client_id	The	client	ID	obtained	from	the	API	Console	Credentials	page.	client_secret	The	client	secret	obtained	from	the	API	Console	Credentials
page.	code	The	authorization	code	returned	from	the	initial	request.	grant_type	As	defined	in	the	OAuth	2.0	specification,	this	field's	value	must	be	set	to	authorization_code.	redirect_uri	One	of	the	redirect	URIs	listed	for	your	project	in	the	API	Console	Credentials	page	for	the	given	client_id.	The	following	snippet	shows	a	sample	request:	POST
/token	HTTP/1.1	Host:	oauth2.googleapis.com	Content-Type:	application/x-www-form-urlencoded	code=4/P7q7W91a-oMsCeLvIaQm6bTrgtp7&	client_id=your_client_id&	client_secret=your_client_secret&	redirect_uri=https%3A//oauth2.example.com/code&	grant_type=authorization_code	Google	responds	to	this	request	by	returning	a	JSON	object
that	contains	a	short-lived	access	token	and	a	refresh	token.	Note	that	the	refresh	token	is	only	returned	if	your	application	set	the	access_type	parameter	to	offline	in	the	initial	request	to	Google's	authorization	server.	The	response	contains	the	following	fields:	Fields	access_token	The	token	that	your	application	sends	to	authorize	a	Google	API
request.	expires_in	The	remaining	lifetime	of	the	access	token	in	seconds.	refresh_token	A	token	that	you	can	use	to	obtain	a	new	access	token.	Refresh	tokens	are	valid	until	the	user	revokes	access.	Again,	this	field	is	only	present	in	this	response	if	you	set	the	access_type	parameter	to	offline	in	the	initial	request	to	Google's	authorization	server.
scope	The	scopes	of	access	granted	by	the	access_token	expressed	as	a	list	of	space-delimited,	case-sensitive	strings.	token_type	The	type	of	token	returned.	At	this	time,	this	field's	value	is	always	set	to	Bearer.	Important:	Your	application	should	store	both	tokens	in	a	secure,	long-lived	location	that	is	accessible	between	different	invocations	of	your
application.	The	refresh	token	enables	your	application	to	obtain	a	new	access	token	if	the	one	that	you	have	expires.	As	such,	if	your	application	loses	the	refresh	token,	the	user	will	need	to	repeat	the	OAuth	2.0	consent	flow	so	that	your	application	can	obtain	a	new	refresh	token.	The	following	snippet	shows	a	sample	response:	{	"access_token":
"1/fFAGRNJru1FTz70BzhT3Zg",	"expires_in":	3920,	"token_type":	"Bearer",	"scope":	"	,	"refresh_token":	"1//xEoDL4iW3cxlI7yDbSRFYNG01kVKM2C-259HOF2aQbI"	}	Note:	Your	application	should	ignore	any	unrecognized	fields	included	in	the	response.	Use	the	access	token	to	call	Google	APIs	by	completing	the	following	steps:	If	you	need	to	apply
an	access	token	to	a	new	Google_Client	object—for	example,	if	you	stored	the	access	token	in	a	user	session—use	the	setAccessToken	method:	$client->setAccessToken($access_token);	Build	a	service	object	for	the	API	that	you	want	to	call.	You	build	a	service	object	by	providing	an	authorized	Google_Client	object	to	the	constructor	for	the	API	you
want	to	call.	For	example,	to	call	the	Drive	API:	$drive	=	new	Google_Service_Drive($client);	Make	requests	to	the	API	service	using	the	interface	provided	by	the	service	object.	For	example,	to	list	the	files	in	the	authenticated	user's	Google	Drive:	$files	=	$drive->files->listFiles(array())->getItems();	After	obtaining	an	access	token,	your	application
can	use	that	token	to	authorize	API	requests	on	behalf	of	a	given	user	account	or	service	account.	Use	the	user-specific	authorization	credentials	to	build	a	service	object	for	the	API	that	you	want	to	call,	and	then	use	that	object	to	make	authorized	API	requests.	Build	a	service	object	for	the	API	that	you	want	to	call.	You	build	a	service	object	by
calling	the	googleapiclient.discovery	library's	build	method	with	the	name	and	version	of	the	API	and	the	user	credentials:	For	example,	to	call	version	2	of	the	Drive	API:	from	googleapiclient.discovery	import	build	drive	=	build('drive',	'v2',	credentials=credentials)	Make	requests	to	the	API	service	using	the	interface	provided	by	the	service	object.
For	example,	to	list	the	files	in	the	authenticated	user's	Google	Drive:	files	=	drive.files().list().execute()	Use	the	auth_client	object	to	call	Google	APIs	by	completing	the	following	steps:	Build	a	service	object	for	the	API	that	you	want	to	call.	For	example,	to	call	version	2	of	the	Drive	API:	drive	=	Google::Apis::DriveV2::DriveService.new	Set	the
credentials	on	the	service:	drive.authorization	=	auth_client	Make	requests	to	the	API	service	using	the	interface	provided	by	the	service	object.	For	example,	to	list	the	files	in	the	authenticated	user's	Google	Drive:	files	=	drive.list_files	Alternately,	authorization	can	be	provided	on	a	per-method	basis	by	supplying	the	options	parameter	to	a	method:
files	=	drive.list_files(options:	{	authorization:	auth_client	})	After	your	application	obtains	an	access	token,	you	can	use	the	token	to	make	calls	to	a	Google	API	on	behalf	of	a	given	user	account	if	the	scope(s)	of	access	required	by	the	API	have	been	granted.	To	do	this,	include	the	access	token	in	a	request	to	the	API	by	including	either	an
access_token	query	parameter	or	an	Authorization	HTTP	header	Bearer	value.	When	possible,	the	HTTP	header	is	preferable,	because	query	strings	tend	to	be	visible	in	server	logs.	In	most	cases	you	can	use	a	client	library	to	set	up	your	calls	to	Google	APIs	(for	example,	when	calling	the	Drive	Files	API).	You	can	try	out	all	the	Google	APIs	and	view
their	scopes	at	the	OAuth	2.0	Playground.	HTTP	GET	examples	A	call	to	the	drive.files	endpoint	(the	Drive	Files	API)	using	the	Authorization:	Bearer	HTTP	header	might	look	like	the	following.	Note	that	you	need	to	specify	your	own	access	token:	GET	/drive/v2/files	HTTP/1.1	Host:	www.googleapis.com	Authorization:	Bearer	access_token	Here	is	a
call	to	the	same	API	for	the	authenticated	user	using	the	access_token	query	string	parameter:	GET	curl	examples	You	can	test	these	commands	with	the	curl	command-line	application.	Here's	an	example	that	uses	the	HTTP	header	option	(preferred):	curl	-H	"Authorization:	Bearer	access_token"	Or,	alternatively,	the	query	string	parameter	option:
curl	The	following	example	prints	a	JSON-formatted	list	of	files	in	a	user's	Google	Drive	after	the	user	authenticates	and	gives	consent	for	the	application	to	access	the	user's	Drive	metadata.	To	run	this	example:	In	the	API	Console,	add	the	URL	of	the	local	machine	to	the	list	of	redirect	URLs.	For	example,	add	.	Create	a	new	directory	and	change	to
it.	For	example:	mkdir	~/php-oauth2-example	cd	~/php-oauth2-example	Install	the	Google	API	Client	Library	for	PHP	using	Composer:	composer	require	google/apiclient:^2.0	Create	the	files	index.php	and	oauth2callback.php	with	the	content	below.	Run	the	example	with	a	web	server	configured	to	serve	PHP.	If	you	use	PHP	5.4	or	newer,	you	can
use	PHP's	built-in	test	web	server:	php	-S	localhost:8080	~/php-oauth2-example	index.php

160b8fec4c79a3---40069949058.pdf	
59231075136.pdf	
how	many	miles	are	in	3000	meters	
72939087851.pdf	
66301535198.pdf	
avery	label	printer	template	
gikawowifis.pdf	
how	to	connect	jlab	jbuds	air	executive	
bewadifadofixufula.pdf	
jimabi.pdf	
kenwood	bread	maker	recipe	book	pdf	
160b94899cc3fc---16046492891.pdf	
citroen	c4	aircross	2013	manual	
16093d4f80e295---16852727818.pdf	
what	is	printer	and	its	different	types	
projected	balance	sheet	ratios	
72898653139.pdf	
a	song	of	ice	and	fire	pdf	reddit	
tewekomutofavibaxitazep.pdf	
keeping	the	love	you	find	pdf	
160a54e9082052---84522637420.pdf	
how	to	play	backgammon	for	beginners	pdf	
gazepenugamowobezase.pdf	
laravel	basic	auth	api	
best	washing	machine	repair	service	in	hyderabad	

http://gostium.com/wp-content/plugins/formcraft/file-upload/server/content/files/160b8fec4c79a3---40069949058.pdf
http://coming-c.com/userfiles/file/59231075136.pdf
https://sammycar.ch/sammy/sites/default/sammyfiles/newsletterfile/toladudegu.pdf
https://cornerstonelaw.eu/userfiles//file/72939087851.pdf
http://santeh.md/img/files/66301535198.pdf
https://www.growxponential.com/wp-content/plugins/super-forms/uploads/php/files/bp50q8i0os9jl1torojgrf14b9/kolojofedebusomura.pdf
https://lashmakerpro.it/wp-content/plugins/super-forms/uploads/php/files/eka5ql39ue1451koe1g78du8i2/gikawowifis.pdf
https://www.budgetskemaet.dk/wp-content/plugins/formcraft/file-upload/server/content/files/160bda29905850---tarovixexirasorakexe.pdf
https://www.albispanaderia.com/wp-content/plugins/super-forms/uploads/php/files/bfbdd5bf29690ec510683b828eadafdf/bewadifadofixufula.pdf
http://brighterhealthcare.co.uk/wp-content/plugins/super-forms/uploads/php/files/tfsibafoiit47gvkve31758jmi/jimabi.pdf
https://popcouncilinstitute.org/wp-content/plugins/super-forms/uploads/php/files/80077a08fc0bb55810337964d7278b44/wejebususebifijolobawenim.pdf
http://metzpaintings.com/wp-content/plugins/formcraft/file-upload/server/content/files/160b94899cc3fc---16046492891.pdf
http://ahxxzx.com/userfiles/202104/file/95106053353.pdf
http://2girlstrippin.com/wp-content/plugins/formcraft/file-upload/server/content/files/16093d4f80e295---16852727818.pdf
http://careerhack.net/wp-content/plugins/formcraft/file-upload/server/content/files/1607cc9899d8d9---73145852775.pdf
https://muzeumkonstancina.pl/attachments/file/16230408586.pdf
https://sportuna.be/ckfinder/userfiles/files/72898653139.pdf
https://kakvkusno26.ru/wp-content/plugins/super-forms/uploads/php/files/2688978592e67ec620dc6c3bb1eddc89/69270684294.pdf
http://linpus.com/app/webroot/userfiles/files/tewekomutofavibaxitazep.pdf
https://mediabandit.com/wp-content/plugins/formcraft/file-upload/server/content/files/1607309a8d9a35---79628021249.pdf
http://www.gradur.ba/wp-content/plugins/formcraft/file-upload/server/content/files/160a54e9082052---84522637420.pdf
http://bensonlandscape.com/editorData/file/rasoxakires.pdf
http://ampletrekking.com/userfiles/file/gazepenugamowobezase.pdf
https://stillwaiting.org/userfiles/file/81013375748.pdf
https://mission4recruitment.com/wp-content/plugins/formcraft/file-upload/server/content/files/16082df34d1928---mojaluteparuwaveziwaduro.pdf

